2020

MATHEMATICS - HONOURS

Fifth Paper

(Module - X)
Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

Group - A

(Marks : 20)
Answer any one question.

1. (a) Let V and W be two vector spaces over a field F and $T: V \rightarrow W$ be a linear mapping. If $\operatorname{Ker} T=\{\theta\}$ and $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a basis of V, prove that $\left\{T\left(\alpha_{1}\right), T\left(\alpha_{2}\right), \ldots T\left(\alpha_{n}\right)\right\}$ is a basis of $\operatorname{Im} T$.
(b) Let $P_{3}(\mathbb{R})$ be the real vector space of all polynomials of degree atmost 3. Define $S: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ by $S(p(x))=p(x+1)$ for all $p(x) \in P_{3}(\mathbb{R})$. Find the matrix of S relative to the ordered basis $\left\{1, x, x^{2}, x^{3}\right\}$ of $P_{3}(\mathbb{R})$.
(c) If the matrix of a linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with respect to the ordered basis $\{(0,1,1),(1,0,1)$, $(1,1,0)\}$ of \mathbb{R}^{3} is given by $\left(\begin{array}{rrr}0 & 3 & 0 \\ 2 & 3 & -2 \\ 2 & -1 & 2\end{array}\right)$, then find $\operatorname{dim}(\operatorname{Im} T)$.
2. (a) Let V and W be two vector spaces of finite dimensions over a field F and let $T: V \rightarrow W$ be a linear mapping. Prove that T is invertible if and only if the matrix of T relative to any chosen pair of ordered bases of V and W is nonsingular.
(b) A linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is defined by $T(x, y, z)=(y+z, z+x, x+y, x+y+z),(x, y, z) \in \mathbb{R}^{3}$. Find $\operatorname{Im} T$ and dimension of $\operatorname{Im} T$. Also find nullity T.
$10+4+4+2$
3. (a) If a subgroup H of a group G is defined to be normal if $a \mathrm{H} a^{-} \subseteq \mathrm{H}$ for all $a \in \mathrm{G}$, prove that H is a normal subgroup of G if $a \mathrm{H} a^{-1}=\mathrm{H}$ for all a in G.
(b) Is there any group G of order 6 with the quotient group $G / Z(G)$ of order 3, where $Z(G)=\{a \in G ; a x=x a$ for all $x \in G\}$? Justify your answer.
(c) Prove that any two infinite cyclic groups are isomorphic. Is this true for finite cyclic groups? Justify your answer.
$6+4+(6+4)$
4. (a) Let G and G^{\prime} be two groups and $\phi: G \rightarrow G^{\prime}$ be an onto homomorphism. Let $H=$ Ker ϕ. Show that $G / H \simeq G^{\prime}$. Hence show that there does not exist any homomorphism from Z_{9} onto Z_{6}.
(b) Let $a, b \in \mathbb{R}$ and a mapping $T_{a b}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $T_{a b}(x)=a x+b, x \in \mathbb{R}$. Let $G=\left\{T_{a b}: a \neq 0\right\}$. Assume that $(G, *)$ is a group where $*$ is the composition of mappings. If $H=\left\{T_{a b}: a=1\right\}$, prove that H is a normal subgroup of $(G, *)$.

Group - B

(Marks : 15)
Answer any one question.
5. If $\left(A_{1}, A_{2}\right)$ is a covariant vector in Cartesian coordinates x^{1}, x^{2} where $A_{1}=\frac{x^{1}}{x^{2}}$ and $A_{2}=\frac{x^{2}}{x^{1}}$, find its components in polar coordinates.
6. (a) Show that angle between two vectors at a point in a Riemannian space is an invariant under coordinate transformation.
(b) Prove that the covariant derivative of the metric tensor $g_{i j}$ vanishes.
7. Prove that if A_{i} and B_{i} be two covariant vectors, then $A_{i} B_{j}-A_{j} B_{i}$ is a skew symmetric tensor. 15
8. Calculate the quantities $\left(g^{i j}\right)$ and $\left(g_{i j}\right)$ where the metric is given by $d s^{2}=\left(d x_{1}\right)^{2}+x_{1}^{2}\left(d x_{2}\right)^{2}+x_{1}^{2} \sin ^{2} x_{2}\left(d x_{3}\right)^{2}$. Also calculate $\left\{\begin{array}{ll} & 2 \\ 2 & \\ 1\end{array}\right\}$.
9. Prove that $A^{j k}[i j, k]=\frac{1}{2} A^{j k} \frac{\partial g_{j k}}{\partial x^{i}}$, where $A^{i j}$ are components of a symmetric contravariant tensor of rank 2 .

Answer either Group - C or Group - D

Group - C

(Marks : 15)

Answer any one question.

10. (a) (i) Show that $L\left(t^{n}\right)=\frac{n!}{p^{n+1}}$, where n is a positive integer and $t>0$.
(ii) Find the Laplace transform of $f(t)$ defined by

$$
f(t)= \begin{cases}0 & \text { if } 0<t<2 \\ 3 & \text { if } t>2\end{cases}
$$

(b) Using Laplace transform solve $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+10 y=0$, when $y(0)=1, y\left(\frac{\pi}{4}\right)=\sqrt{2}$.
(c) Find the power series solution of $\frac{d^{2} y}{d x^{2}}+(x-3) \frac{d y}{d x}+y=0$ near $x=2$.
11. (a) Evaluate $L^{-1}\left(\frac{1}{(p-3)^{2}} \cdot \frac{1}{p+4}\right)$
(b) Using Laplace transform, solve $y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=4 e^{-2 t}, y(0)=-1$ and $y^{\prime}(0)=4$.
(c) State a set of sufficient conditions for the existence of Laplace transform. Show that Laplace transform is a linear operator. If f is the Laplace transform of F, determine the Laplace transform of G defined by $G(t)= \begin{cases}0 & 0<t<a \\ F(t-a) & t>a\end{cases}$

Group - D

(Marks : 15)

Answer any two questions.

12. State and prove the necessary and sufficient condition for a connected graph to be an Euler graph.
13. If n, e and f are respectively the number of vertices, number of edges and number of faces of a planar graph, then show that $n-e+f=2$.
14. If $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of the vertices of a graph with n vertices and e edges then prove that $\delta(G) \leqslant \frac{2 e}{n} \leqslant \Delta(G)$.
15. (a) Define complement of a graph. Show that the complement of P_{4} (a path on 4 vertices) is again P_{4}.
(b) In a tree T prove that there exists one and only one path between every pair of vertices.
16. Construct the minimum spanning tree for the given graph using Prim's Algorithm.

